Sajjad Ansari, Author at MarkTechPost https://www.marktechpost.com/author/sajjadansari/ An Artificial Intelligence News Platform Fri, 27 Dec 2024 07:26:39 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 https://www.marktechpost.com/wp-content/uploads/2022/04/cropped-Favicon-512-x-512-1-1-32x32.png Sajjad Ansari, Author at MarkTechPost https://www.marktechpost.com/author/sajjadansari/ 32 32 127842392 AWS Researchers Propose LEDEX: A Machine Learning Training Framework that Significantly Improves the Self-Debugging Capability of LLMs https://www.marktechpost.com/2024/12/26/aws-researchers-propose-ledex-a-machine-learning-training-framework-that-significantly-improves-the-self-debugging-capability-of-llms/ https://www.marktechpost.com/2024/12/26/aws-researchers-propose-ledex-a-machine-learning-training-framework-that-significantly-improves-the-self-debugging-capability-of-llms/#respond Fri, 27 Dec 2024 07:26:34 +0000 https://www.marktechpost.com/?p=66754 Code generation using Large Language Models (LLMs) has emerged as a critical research area, but generating accurate code for complex problems in a single attempt remains a significant challenge. Even skilled human developers often require multiple iterations of trial-and-error debugging to solve difficult programming problems. While LLMs have demonstrated impressive code generation capabilities, their self-debugging […]

The post AWS Researchers Propose LEDEX: A Machine Learning Training Framework that Significantly Improves the Self-Debugging Capability of LLMs appeared first on MarkTechPost.

]]>

Code generation using Large Language Models (LLMs) has emerged as a critical research area, but generating accurate code for complex problems in a single attempt remains a significant challenge. Even skilled human developers often require multiple iterations of trial-and-error debugging to solve difficult programming problems. While LLMs have demonstrated impressive code generation capabilities, their self-debugging ability to analyze incorrect code and make necessary corrections is still limited. This limitation is evident in open-source models like StarCoder and CodeLlama, which show significantly lower self-refinement performance compared to models like GPT-3.5-Turbo.

Existing approaches to improve code generation and debugging capabilities in LLMs have followed several distinct paths. LLMs have shown significant success across various code-related tasks, including code generation, bug fixing, program testing, and fuzzing. These models use extensive pre-training on vast datasets to understand patterns and generate contextually relevant code. However, most existing work has primarily focused on single-round generation rather than iterative improvement. Other methods like ILF, CYCLE, and Self-Edit have explored supervised fine-tuning approaches while solutions like OpenCodeInterpreter and EURUS have attempted to create high-quality multi-turn interaction datasets using advanced models for fine-tuning purposes.

Researchers from Purdue University, AWS AI Labs, and the University of Virginia have proposed LEDEX (learning to self-debug and explain code), a novel training framework designed to enhance LLMs’ self-debugging capabilities. The framework builds on the observation that a sequential process of explaining incorrect code followed by refinement enables LLMs to analyze and improve faulty code in a better way. LEDEX implements an automated pipeline to collect high-quality datasets for code explanation, and refinement. Moreover, it combines supervised fine-tuning (SFT) and reinforcement learning (RL) approaches, utilizing successful and failed trajectories with a specialized reward system that evaluates code explanation and refinement quality.

LEDEX employs a comprehensive architecture containing data collection, verification, and multi-stage training processes. The framework begins by collecting code explanation and refinement datasets through queries to pre-trained or instruction-tuned models. These responses undergo rigorous execution-based verification to filter and maintain only high-quality explanation and refinement data. The collected dataset then serves as input for supervised fine-tuning which significantly enhances the model’s capabilities in bug explanation and code refinement. LEDEX uses programming problems from MBPP, APPS, and CodeContests to train data. To expand the dataset of incorrect solutions, the framework prompts pre-trained LLMs like StarCoder and CodeLlama with 3-shot examples to generate 20 solutions per problem.

LEDEX is evaluated using three model backbones: StarCoder-15B, CodeLlama-7B, and CodeLlama-13B, with initial training data collected from GPT-3.5-Turbo. The SFT phase shows significant improvements, achieving up to a 15.92% increase in pass@1 and 9.30% in pass@10 metrics across four benchmark datasets. The subsequent RL phase further enhances performance with additional improvements of up to 3.54% in pass@1 and 2.55% in pass@10. Notably, LEDEX’s model-agnostic nature is shown through experiments with CodeLlama-7B, which achieve substantial improvements (8.25% in pass@1 and 2.14% in pass@10) even when trained on data collected from CodeLlama-34B or itself, proving its effectiveness independent of GPT-3.5-Turbo.

In conclusion, researchers introduced LEDEX, a comprehensive and scalable framework that combines automated data collection, verification processes, SFT, and RL with innovative reward designs to significantly improve LLMs’ ability to identify and correct code errors. The framework’s model-agnostic nature is evidenced by its successful implementation with GPT-3.5-Turbo and CodeLlama, while its rigorous data verification process ensures the quality of code explanations and refinements. Human evaluations further validate the framework’s effectiveness, confirming that LEDEX-trained models produce superior code explanations that effectively assist developers in understanding and resolving code issues.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post AWS Researchers Propose LEDEX: A Machine Learning Training Framework that Significantly Improves the Self-Debugging Capability of LLMs appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/26/aws-researchers-propose-ledex-a-machine-learning-training-framework-that-significantly-improves-the-self-debugging-capability-of-llms/feed/ 0 66754
A Comprehensive Analytical Framework for Mathematical Reasoning in Multimodal Large Language Models https://www.marktechpost.com/2024/12/26/a-comprehensive-analytical-framework-for-mathematical-reasoning-in-multimodal-large-language-models/ https://www.marktechpost.com/2024/12/26/a-comprehensive-analytical-framework-for-mathematical-reasoning-in-multimodal-large-language-models/#respond Fri, 27 Dec 2024 00:42:39 +0000 https://www.marktechpost.com/?p=66737 Mathematical reasoning has emerged as a critical frontier in artificial intelligence, particularly in developing Large Language Models (LLMs) capable of performing complex problem-solving tasks. While traditional mathematical reasoning focuses on text-based inputs, modern applications increasingly involve multimodal elements including diagrams, graphs, and equations. This presents significant challenges for existing systems in processing and integrating information […]

The post A Comprehensive Analytical Framework for Mathematical Reasoning in Multimodal Large Language Models appeared first on MarkTechPost.

]]>

Mathematical reasoning has emerged as a critical frontier in artificial intelligence, particularly in developing Large Language Models (LLMs) capable of performing complex problem-solving tasks. While traditional mathematical reasoning focuses on text-based inputs, modern applications increasingly involve multimodal elements including diagrams, graphs, and equations. This presents significant challenges for existing systems in processing and integrating information across different modalities. The complexities extend beyond simple text comprehension, like deep semantic understanding, context preservation across modalities, and the ability to perform complex reasoning tasks combining visual and textual elements.

Since 2021, there has been a steady increase in math-specific Large Language Models (MathLLMs), each addressing different aspects of mathematical problem-solving. Early models like GPT-f and Minerva established foundational capabilities in mathematical reasoning, while Hypertree Proof Search and Jiuzhang 1.0 advanced theorem proving and question understanding. The field further diversified in 2023 by introducing multimodal support through models like SkyworkMath, followed by specialized developments in 2024 focusing on mathematical instruction (Qwen2.5-Math) and proof capabilities (DeepSeek-Proof). Despite these advancements, existing approaches focus too narrowly on specific mathematical domains or fail to address the challenges of multimodal mathematical reasoning.

Researchers from HKUST (GZ), HKUST, NTU, and Squirrel AI have proposed a comprehensive analytical framework to understand the landscape of mathematical reasoning in the context of multimodal large language models (MLLMs). Researchers reviewed over 200 research papers published since 2021, focusing on the emergence and evolution of Math-LLMs in multimodal environments. This systematic approach examines the multimodal mathematical reasoning pipeline while investigating the role of both traditional LLMs and MLLMs. The research particularly emphasizes the identification and analysis of five major challenges that affects the achievement of artificial general intelligence in mathematical reasoning.

The basic architecture focuses on problem-solving scenarios where the input consists of problem statements presented either in pure textual format or accompanied by visual elements such as figures and diagrams. The system processes these inputs to generate solutions in numerical or symbolic formats. While English dominates the available benchmarks, some datasets exist in other languages like Chinese and Romanian. Dataset sizes vary significantly, ranging from compact collections like QRData with 411 questions to extensive repositories like OpenMathInstruct-1 containing 1.8 million problem-solution pairs.

The evaluation of mathematical reasoning capabilities in MLLMs uses two primary approaches: discriminative and generative evaluation methods. In discriminative evaluation, models are evaluated based on their ability to correctly classify or select answers, with advanced metrics like performance drop rate (PDR), and specialized metrics like error step accuracy. The generative evaluation approach focuses on the model’s capacity to produce detailed explanations and step-by-step solutions. Notable frameworks like MathVerse utilize GPT-4 to evaluate the reasoning process, while CHAMP implements a solution evaluation pipeline where GPT-4 serves as a grader comparing generated answers against ground truth solutions.

Here are the five key challenges in mathematical reasoning with MLLMs:

  • Visual Reasoning Limitations: Current models struggle with complex visual elements like 3D geometry and irregular tables.
  • Limited Multimodal Integration: While models handle text and vision, they cannot process other modalities like audio explanations or interactive simulations.
  • Domain Generalization Issues: Models that excel in one mathematical domain often fail to perform well in others, limiting their practical utility.
  • Error Detection and Feedback: MLLMs currently lack robust mechanisms to detect, categorize, and correct mathematical errors effectively.
  • Educational Integration Challenges: Current systems don’t adequately account for real-world educational elements like handwritten notes and draft work.

In conclusion, researchers presented a comprehensive analysis of mathematical reasoning in MLLMs, that reveals significant progress and persistent challenges in the field. The emergence of specialized Math-LLMs has shown substantial advancement in handling complex mathematical tasks, particularly in multimodal environments. Moreover, addressing the above five challenges is crucial for developing more sophisticated AI systems capable of human-like mathematical reasoning. The insights from this analysis provide a roadmap for future research directions, highlighting the importance of more robust and versatile models that can effectively handle the complexities of mathematical reasoning.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post A Comprehensive Analytical Framework for Mathematical Reasoning in Multimodal Large Language Models appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/26/a-comprehensive-analytical-framework-for-mathematical-reasoning-in-multimodal-large-language-models/feed/ 0 66737
Meet ONI: A Distributed Architecture for Simultaneous Reinforcement Learning Policy and Intrinsic Reward Learning with LLM Feedback https://www.marktechpost.com/2024/12/25/meet-oni-a-distributed-architecture-for-simultaneous-reinforcement-learning-policy-and-intrinsic-reward-learning-with-llm-feedback/ https://www.marktechpost.com/2024/12/25/meet-oni-a-distributed-architecture-for-simultaneous-reinforcement-learning-policy-and-intrinsic-reward-learning-with-llm-feedback/#respond Thu, 26 Dec 2024 07:24:32 +0000 https://www.marktechpost.com/?p=66716 Reward functions play a crucial role in reinforcement learning (RL) systems, but their design presents significant challenges in balancing task definition simplicity with optimization effectiveness. The conventional approach of using binary rewards offers a straightforward task definition but creates optimization difficulties due to sparse learning signals. While intrinsic rewards have emerged as a solution to […]

The post Meet ONI: A Distributed Architecture for Simultaneous Reinforcement Learning Policy and Intrinsic Reward Learning with LLM Feedback appeared first on MarkTechPost.

]]>

Reward functions play a crucial role in reinforcement learning (RL) systems, but their design presents significant challenges in balancing task definition simplicity with optimization effectiveness. The conventional approach of using binary rewards offers a straightforward task definition but creates optimization difficulties due to sparse learning signals. While intrinsic rewards have emerged as a solution to aid policy optimization, their crafting process requires extensive task-specific knowledge and expertise, placing substantial demands on human experts who must carefully balance multiple factors to create reward functions that accurately represent the desired task and enable efficient learning.

Recent approaches have utilized Large Language Models (LLMs) to automate reward design based on natural language task descriptions, following two main methodologies. The first approach focuses on generating reward function codes through LLMs, which has shown success in continuous control tasks. However, this method faces limitations as it requires access to environment source code or detailed parameter descriptions and struggles with processing high-dimensional state representations. The second approach involves generating reward values directly through LLMs, exemplified by methods like Motif, which ranks observation captions using LLM preferences. However, it requires pre-existing captioned observation datasets and involves a time-consuming three-stage process.

Researchers from Meta, the University of Texas Austin, and UCLA have proposed ONI, a novel distributed architecture that simultaneously learns RL policies and intrinsic reward functions using LLM feedback. The method uses an asynchronous LLM server to annotate the agent’s collected experiences, which are then transformed into an intrinsic reward model. The approach explores various algorithmic methods for reward modeling, including hashing, classification, and ranking models, to investigate their effectiveness in addressing sparse reward problems. This unified methodology achieves superior performance in challenging sparse reward tasks within the NetHack Learning Environment, operating solely on the agent’s gathered experience without requiring external datasets.

ONI uses several key components built upon the Sample Factory library and its asynchronous variant proximal policy optimization (APPO). The system operates with 480 concurrent environment instances on a Tesla A100-80GB GPU with 48 CPUs, achieving approximately 32k environment interactions per second. The architecture incorporates four crucial components: an LLM server on a separate node, an asynchronous process for transmitting observation captions to the LLM server via HTTP requests, a hash table for storing captions and LLM annotations, and a dynamic reward model learning code. This asynchronous design maintains 80-95% of the original system throughput, processing 30k environment interactions per second without reward model training and 26k interactions when training a classification-based reward model.

The experimental results demonstrate significant performance improvements across multiple tasks in the NetHack Learning Environment. While the extrinsic reward agent performs adequately on the dense Score task, it fails on sparse reward tasks. ‘ONI-classification’ matches or approaches the performance of existing methods like Motif across most tasks, achieving this without pre-collected data or additional dense reward functions. Among ONI variants, ‘ONI-retrieval’ shows strong performance, while ‘ONI-classification’ consistently improves through its ability to generalize to unseen messages. Moreover, the ‘ONI-ranking’ achieves the highest experience levels, while ‘ONI-classification’ leads in other performance metrics in reward-free settings.

In this paper, researchers introduced ONI which represents a significant advancement in RL by introducing a distributed system that simultaneously learns intrinsic rewards and agent behaviors online. It shows state-of-the-art performance across challenging sparse reward tasks in the NetHack Learning Environment while eliminating the need for pre-collected datasets or auxiliary dense reward functions that were previously essential. This work establishes a foundation for developing more autonomous intrinsic reward methods that can learn exclusively from agent experience, operate independently of external dataset constraints, and effectively integrate with high-performance reinforcement learning systems.


Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Meet ONI: A Distributed Architecture for Simultaneous Reinforcement Learning Policy and Intrinsic Reward Learning with LLM Feedback appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/25/meet-oni-a-distributed-architecture-for-simultaneous-reinforcement-learning-policy-and-intrinsic-reward-learning-with-llm-feedback/feed/ 0 66716
FineWeb-C: A Community-Built Dataset For Improving Language Models In ALL Languages https://www.marktechpost.com/2024/12/24/fineweb-c-a-community-built-dataset-for-improving-language-models-in-all-languages/ https://www.marktechpost.com/2024/12/24/fineweb-c-a-community-built-dataset-for-improving-language-models-in-all-languages/#respond Wed, 25 Dec 2024 06:50:02 +0000 https://www.marktechpost.com/?p=66692 FineWeb2 significantly advances multilingual pretraining datasets, covering over 1000 languages with high-quality data. The dataset uses approximately 8 terabytes of compressed text data and contains nearly 3 trillion words, sourced from 96 CommonCrawl snapshots between 2013 and 2024. Processed using the datatrove library, FineWeb2 demonstrates superior performance compared to established datasets like CC-100, mC4, CulturaX, […]

The post FineWeb-C: A Community-Built Dataset For Improving Language Models In ALL Languages appeared first on MarkTechPost.

]]>

FineWeb2 significantly advances multilingual pretraining datasets, covering over 1000 languages with high-quality data. The dataset uses approximately 8 terabytes of compressed text data and contains nearly 3 trillion words, sourced from 96 CommonCrawl snapshots between 2013 and 2024. Processed using the datatrove library, FineWeb2 demonstrates superior performance compared to established datasets like CC-100, mC4, CulturaX, and HPLT across nine diverse languages. The ablation and evaluation setup is present in this github repo.

Huggingface community researchers introduced FineWeb-C, a collaborative, community-driven project that expands upon FineWeb2 to create high-quality educational content annotations across hundreds of languages. The project enables community members to rate web content’s educational value and identify problematic elements through the Argilla platform. Languages achieving 1,000 annotations qualify for dataset inclusion. This annotation process serves dual purposes: identifying high-quality educational content and improving LLM development across all languages.

318 Hugging Face community members have submitted 32,863 annotations, contributing to developing high-quality LLMs across underrepresented languages. FineWeb-Edu is a dataset built upon the original FineWeb dataset and employs an educational quality classifier trained on LLama3-70B-Instruct annotations to identify and retain the most educational content. This approach has proven successful, outperforming FineWeb on popular benchmarks while reducing the data volume needed for training effective LLMs. The project aims to extend FineWeb-Edu’s capabilities to all world languages by collecting community annotations to train language-specific educational quality classifiers.

The project prioritizes human-generated annotations over LLM-based ones, particularly for low-resource languages where LLM performance cannot be reliably validated. This community-driven approach parallels Wikipedia’s collaborative model, emphasizing open access and democratization of AI technology. Contributors join a broader movement to break language barriers in AI development, as commercial companies typically focus on profitable languages. The dataset’s open nature enables anyone to build AI systems tailored to specific community needs while facilitating learning about effective approaches across different languages.

The FineWeb-Edu uses multiple annotations per page for some languages, allowing flexible calculation of annotator agreement. Quality control measures include plans to increase annotation overlap in heavily annotated languages. The data contains a boolean column ‘problematic_content_label_present’ to identify pages with problematic content flags, often resulting from incorrect language detection. Users can filter content based on either individual problematic labels or annotator agreement through the ‘problematic_content_label_agreement’ column. The dataset operates under the ODC-By v1.0 license and CommonCrawl’s Terms of Use.

In conclusion, FineWeb2’s community-driven extension, FineWeb-C, has gathered 32,863 annotations from 318 contributors, focusing on educational content labeling. The project demonstrates superior performance compared to existing datasets with less training data through FineWeb-Edu’s specialized educational content classifier. Unlike commercial approaches, this open-source initiative prioritizes human annotations over LLM-based ones, particularly for low-resource languages. The dataset features robust quality control measures, including multiple annotation layers and problematic content filtering, while operating under the ODC-By v1.0 license.


Check out the details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post FineWeb-C: A Community-Built Dataset For Improving Language Models In ALL Languages appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/24/fineweb-c-a-community-built-dataset-for-improving-language-models-in-all-languages/feed/ 0 66692
ConfliBERT: A Domain-Specific Language Model for Political Violence Event Detection and Classification https://www.marktechpost.com/2024/12/23/conflibert-a-domain-specific-language-model-for-political-violence-event-detection-and-classification/ https://www.marktechpost.com/2024/12/23/conflibert-a-domain-specific-language-model-for-political-violence-event-detection-and-classification/#respond Tue, 24 Dec 2024 01:50:25 +0000 https://www.marktechpost.com/?p=66657 The transformation of unstructured news texts into structured event data represents a critical challenge in social sciences, particularly in international relations and conflict studies. The process involves converting large text corpora into “who-did-what-to-whom” event data, which requires extensive domain expertise and computational knowledge. While domain experts possess the knowledge to interpret these texts accurately, the […]

The post ConfliBERT: A Domain-Specific Language Model for Political Violence Event Detection and Classification appeared first on MarkTechPost.

]]>

The transformation of unstructured news texts into structured event data represents a critical challenge in social sciences, particularly in international relations and conflict studies. The process involves converting large text corpora into “who-did-what-to-whom” event data, which requires extensive domain expertise and computational knowledge. While domain experts possess the knowledge to interpret these texts accurately, the computational aspects of processing large corpora require expertise in machine learning and natural language processing (NLP). This creates a fundamental challenge in effectively combining domain expertise with computational methodologies to achieve accurate and efficient text analysis.

Various Large Language Models (LLMs) have attempted to address the challenge of event data extraction, each with distinct approaches and capabilities. Meta’s Llama 3.1, with 7 billion parameters, balances computational efficiency and performance, while Google’s Gemma 2 (9 billion parameters) shows robust performance across NLP tasks. Alibaba’s Qwen 2.5 specializes in structured output generation, particularly JSON format. A notable development is ConfLlama, based on LLaMA-3 8B, which was fine-tuned on the Global Terrorism Database using QLoRA techniques. These models are evaluated using multiple performance metrics, including precision-recall and F1 scores for binary classification, and entity-level evaluations for Named Entity Recognition (NER) tasks.

Researchers from UT Dallas, King Saud University, West Virginia University, and the University of Arizona have proposed ConfliBERT, a specialized language model designed for processing political and violence-related texts. This model has great capabilities in extracting actor, and action classifications from conflict-related textual data. Moreover, the method shows superior performance in accuracy, precision, and recall compared to LLMs like Google’s Gemma 2, Meta’s Llama 3.1, and Alibaba’s Qwen 2.5 through extensive testing and fine-tuning. A notable advantage of ConfliBERT is its computational efficiency, operating hundreds of times faster than these general-purpose LLMs.

ConfliBERT’s architecture incorporates a complex fine-tuning approach that enhances the BERT representation through additional neural layer parameters, making it specifically adapted for conflict-related text analysis. The model’s evaluation framework focuses on its ability to classify terrorist attacks using the Global Terrorism Dataset (GTD), which was chosen for its comprehensive coverage, well-structured texts, and expert-annotated classifications. The model processes 37,709 texts to produce binary classifications across nine GTD event types. The evaluation methodology uses standard metrics including ROC, accuracy, precision, recall, and F1-scores, following established practices in conflict event classification.

ConfliBERT achieves superior accuracy in basic classification tasks, particularly in identifying bombing and kidnapping events, which are the most common attack types. The model’s precision-recall curves consistently outperform other models, maintaining high performance at the northeastern edge of the plot. While the larger Qwen model approaches ConfliBERT’s performance for specific event types like kidnappings and bombings, it doesn’t match ConfliBERT’s overall capabilities. Moreover, ConfliBERT excels in multi-label classification scenarios, achieving a subset accuracy of 79.38% and the lowest Hamming loss (0.035). The model’s predicted label cardinality (0.907) closely matches the true label cardinality (0.963), indicating its effectiveness in handling complex events with multiple classifications.

In conclusion, researchers introduced ConfliBERT, which represents a significant advancement in NLP the application methods to conflict research and event data processing. The model integrates domain-specific knowledge with computational techniques and shows superior performance in text classification and summarization tasks compared to general-purpose LLMs. Potential areas for development include addressing challenges in continual learning and catastrophic forgetting, expanding ontologies to recognize new events and actors, extending text-as-data methods across different networks and languages, and strengthening the model’s capability to analyze complex political interactions and conflict processes while maintaining its computational efficiency.


Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post ConfliBERT: A Domain-Specific Language Model for Political Violence Event Detection and Classification appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/23/conflibert-a-domain-specific-language-model-for-political-violence-event-detection-and-classification/feed/ 0 66657
TOMG-Bench: Text-based Open Molecule Generation Benchmark https://www.marktechpost.com/2024/12/21/tomg-bench-text-based-open-molecule-generation-benchmark/ https://www.marktechpost.com/2024/12/21/tomg-bench-text-based-open-molecule-generation-benchmark/#respond Sun, 22 Dec 2024 03:34:00 +0000 https://www.marktechpost.com/?p=66603 Molecule discovery is important in various scientific research fields, particularly pharmaceuticals and materials science. While the emergence of Graph Neural Networks (GNNs) has revolutionized this field by enabling the representation of molecules as graphs and facilitating property predictions, it faces difficulties in generalizing across different tasks, requiring substantial task-specific data collection. These approaches show limitations […]

The post TOMG-Bench: Text-based Open Molecule Generation Benchmark appeared first on MarkTechPost.

]]>

Molecule discovery is important in various scientific research fields, particularly pharmaceuticals and materials science. While the emergence of Graph Neural Networks (GNNs) has revolutionized this field by enabling the representation of molecules as graphs and facilitating property predictions, it faces difficulties in generalizing across different tasks, requiring substantial task-specific data collection. These approaches show limitations in generating molecules with customized properties. The integration of LLMs into molecule discovery faces hurdles in effectively aligning molecular and textual data along with challenges in dataset availability and evaluation metrics that capture the aspects of new molecule discovery.

Various artificial intelligence approaches have been developed to enhance molecule discovery. Integration of machine learning, deep learning, and natural language processing has enabled more complex analysis of biological and chemical data. Methods like Convolutional Neural Networks (CNNs) for structural analysis, Recurrent Neural Networks (RNNs) for sequential data processing, and Transformer-based networks for complex pattern recognition. Text-based Molecule Generation (Text2Mol) emerged as a beneficial approach, utilizing natural language descriptions for molecule retrieval. While models like MolT5 show initial success with SMILES string generation, subsequent developments like KVPLM, MoMu, and 3DMoLM enhanced capabilities using molecular graphs and spatial configurations.

Researchers from The Hong Kong Polytechnic University, Shanghai Jiao Tong University, and Shanghai AI Lab have proposed TOMG-Bench (Text-based Open Molecule Generation Benchmark), the first comprehensive benchmark designed to evaluate LLMs’ capabilities in open-domain molecule generation. It introduces three major tasks: molecule editing (MolEdit), molecule optimization (MolOpt), and customized molecule generation (MolCustom), with each task further divided into three subtasks containing 5,000 test samples. Researchers also developed an automated evaluation system to evaluate the quality and accuracy of generated molecules. Through extensive testing of 25 LLMs, TOMG-Bench reveals crucial insights into current limitations in text-guided molecule discovery.

The TOMG-Bench evaluation framework uses four distinct categories of models. The first category, proprietary models, includes commercial API-accessible systems like GPT-4-turbo, GPT-3.5-turbo, Claude-3.5, Claude-3, and Gemini-1.5-pro. The second category features open-source general LLMs with instruction-following capabilities, including various versions of Llama-3, Mistral-7B, Qwen2-7B, yi-1.5-9B, and chatglm-9B. The third category consists of LLMs fine-tuned on the ChEBI-20 dataset, including different versions of MolT5 and BioT5-base. The final category focuses on OpenMolIns fine-tuned LLMs, featuring Galactica-125M, Llama3.2-1B-Instruct, and Llama-3.1-8B-Instruct, with Galactica-125M being tested across five different data sizes of OpenMolIns.

The evaluation results from TOMG-Bench show that Claude-3.5 emerged as the top performer with a weighted average accuracy of 35.92%, followed closely by Gemini-1.5-pro at 34.80%. Further, open-source models show remarkable progress, with Llama-3-70B-Instruct achieving 23.93% accuracy, outperforming GPT-3.5-turbo’s 18.58%. However, models trained specifically on the ChEBI-20 dataset show limited effectiveness, with BioT5-base, despite being the claimed state-of-the-art model for text-based molecule generation, achieving only 4.21% weighted average accuracy. These models particularly struggled with molecular editing operations and customized molecule generation tasks.

In this paper, the researchers introduced TOMG-Bench, a benchmark for evaluating LLMs’ capabilities in open-domain molecule generation. Through comprehensive testing of 25 LLMs, the benchmark has effectively highlighted both the limitations of existing molecule generation approaches and the promising potential of general LLMs in this field. The successful implementation of OpenMolIns instruction tuning has shown remarkable improvements, enabling models to achieve performance levels comparable to GPT-3.5-turbo. However, it faces certain limitations, like insufficient prompt diversity which could lead to instruction overfitting, and potential inaccuracies in the distribution of molecular components such as atoms, bonds, and functional groups compared to real-world scenarios.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post TOMG-Bench: Text-based Open Molecule Generation Benchmark appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/21/tomg-bench-text-based-open-molecule-generation-benchmark/feed/ 0 66603
Meet FineFineWeb: An Open-Sourced Automatic Classification System for Fine-Grained Web Data https://www.marktechpost.com/2024/12/21/meet-finefineweb-an-open-sourced-automatic-classification-system-for-fine-grained-web-data/ https://www.marktechpost.com/2024/12/21/meet-finefineweb-an-open-sourced-automatic-classification-system-for-fine-grained-web-data/#respond Sat, 21 Dec 2024 20:46:23 +0000 https://www.marktechpost.com/?p=66594 Multimodal Art Projection (M-A-P) researchers have introduced FineFineWeb, a large open-source automatic classification system for fine-grained web data. The project decomposes the deduplicated Fineweb into 67 unique categories with extensive seed data. Moreover, a comprehensive correlation analysis between vertical categories and common benchmarks and detailed URL and content distribution analysis are conducted. The system provides […]

The post Meet FineFineWeb: An Open-Sourced Automatic Classification System for Fine-Grained Web Data appeared first on MarkTechPost.

]]>

Multimodal Art Projection (M-A-P) researchers have introduced FineFineWeb, a large open-source automatic classification system for fine-grained web data. The project decomposes the deduplicated Fineweb into 67 unique categories with extensive seed data. Moreover, a comprehensive correlation analysis between vertical categories and common benchmarks and detailed URL and content distribution analysis are conducted. The system provides specialized test sets for PPL evaluation, featuring both “small cup” validation and “medium cup” test options. Complete training materials for FastText and Bert implementation accompany the dataset, with upcoming suggestions for data proportioning based on RegMix methodology.

The data construction process for FineFineWeb follows a systematic multi-step workflow. The initial deduplication of FineWeb employs exact deduplication and MinHash techniques. URL labeling utilizes GPT-4 to process the top million root URLs, categorizing them into Domain-of-Interest (DoI) and Domain-of-Non-Interest (DoNI) URLs. Further, the coarse recall phase involves domain-specific sampling based on the labeled root URLs, with Qwen2-7B-Instruct handling the labeling of 500K positive and negative data points. FastText models, trained on this labeled data, perform coarse recall operations across FineWeb to generate Coarse DoI Data.

The fine recall stage advances the data refinement process using Qwen2-72B-Instruct to label the Coarse DoI Data, creating 100K Dol positive and 100K Dol negative data points. After that, a BERT model, trained on this labeled data, performs fine recall to produce the final DoI subset of FineFineWeb. Moreover, the entire coarse-fine recall iteration undergoes three rounds with specific modifications: 

  • FastText is re-trained using updated seed data, which combines BERT-recalled samples, BERT-dropped samples, and previously labeled seed data.
  • The BERT model keeps frozen during subsequent iterations.
  • Steps for training FastText, coarse recall, and fine recall are repeated without re-labeling data with Qwen2-Instruct models.

The domain-domain similarity Analysis employs a sophisticated analytical approach using proportional weighted sampling across domain subsets, processing one billion tokens from the domain subsets. Then the BGE-M3 model is used to generate two types of embeddings: domain embeddings from domain subset samples and benchmark embeddings from benchmark samples. The analysis concludes by calculating MMD and Wasserstein distances between domain embeddings and benchmark embeddings to quantify domain relationships.

The similarity analysis reveals several key patterns in domain-benchmark relationships. Code-related benchmarks (MBPP and HumanEval) show significant distance from most domains except mathematics, indicating limited code representation in the dataset. General knowledge benchmarks (Hellaswag, ARC, MMLU, BoolQ) demonstrate close relationships with multiple domains, suggesting broad knowledge distribution, while excluding gambling content. Moreover, GSM8K and TriviaQA exhibit notable domain-specific variations, particularly in mathematics and factual content. Lastly, the gambling domain stands distinctly separate, showing minimal overlap with other domains and benchmarks.

The domain-domain duplication analysis examines URL uniqueness across domains using TF-IDF values. High TF-IDF scores indicate domain-specific unique URLs, while low values suggest common URLs across domains. The analysis reveals minimal duplication across most domains, with exceptions in topicality, pet, and atmospheric science categories. The domain-benchmark correlation study, conducted across 28 models, compares domain-specific performance (BPC) rankings with benchmark performance rankings using Spearman correlation. STEM-related domains show stronger correlations with reasoning-focused benchmarks (ARC, MMLU, GSM8K, HumanEval, MBPP), while knowledge-intensive domains like literature and history correlate higher with fact-based benchmarks like TriviaQA.


Check out the Dataset and Tweet. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Meet FineFineWeb: An Open-Sourced Automatic Classification System for Fine-Grained Web Data appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/21/meet-finefineweb-an-open-sourced-automatic-classification-system-for-fine-grained-web-data/feed/ 0 66594
Mechanisms of Localized Receptive Field Emergence in Neural Networks https://www.marktechpost.com/2024/12/17/mechanisms-of-localized-receptive-field-emergence-in-neural-networks/ https://www.marktechpost.com/2024/12/17/mechanisms-of-localized-receptive-field-emergence-in-neural-networks/#respond Tue, 17 Dec 2024 23:40:06 +0000 https://www.marktechpost.com/?p=66457 A notable aspect of peripheral responses in the animal nervous system is localization, where the linear receptive fields of simple-cell neurons respond to specific, contiguous regions much smaller than their total input domain. However, localization poses a critical challenge in understanding neural information processing across sensory systems. Traditional machine learning approaches generate weight distributions, that […]

The post Mechanisms of Localized Receptive Field Emergence in Neural Networks appeared first on MarkTechPost.

]]>

A notable aspect of peripheral responses in the animal nervous system is localization, where the linear receptive fields of simple-cell neurons respond to specific, contiguous regions much smaller than their total input domain. However, localization poses a critical challenge in understanding neural information processing across sensory systems. Traditional machine learning approaches generate weight distributions, that span entire input signals, diverging from biological neural networks’ localized processing strategies. This fundamental difference has motivated researchers to develop artificial learning models, capable of generating localized receptive fields from naturalistic stimuli.

Existing research has explored multiple approaches to address the localization challenge in neural networks. Sparse coding, independent component analysis (ICA), and related compression methods have used a top-down strategy. These techniques aim to generate efficient input signal representations by optimizing explicit sparsity or independence criteria within critically parameterized regimes. It is found that localized receptive fields can develop in simple feedforward neural networks when trained on data models approximating natural visual inputs. Computational simulations reveal that these networks develop increased sensitivity to higher-order input statistics, with even single neurons learning localized receptive fields.

Researchers from Yale University and the Gatsby Unit & SWC, UCL have presented an understanding of the mechanisms behind localized receptive field emergence. Building upon previous work, researchers describe the underlying principles driving localization in neural networks. The paper addresses the challenges of analyzing higher-order input statistics using existing tools that typically assume Gaussianity. By strategically separating the learning process into two distinct stages, the researchers developed analytical equations that capture the early-stage learning dynamics of a single-neuron model trained on idealized naturalistic data. The proposed method presents a unique analytical model that provides a concise description of the higher-order statistical structure driving localization.

The research focuses on a two-layer feedforward neural network with a nonlinear activation function and scalar output. The architecture’s ability to learn rich features has made it a critical subject of ongoing theoretical neural network analyses, highlighting its significance in understanding complex learning dynamics. The theoretical framework establishes an analytical model for localization dynamics in a single-neuron architecture. The researchers identified necessary and sufficient conditions for localization, initially demonstrated for a binary response scenario. Notably, the conditions developed for the single-neuron architecture were empirically validated for a multi-neuron architecture. Also, the proposed architectures would fail to learn localized receptive fields if trained on elliptical distributions.

The research findings reveal critical insights into the localization of neural network weights. When the parameters NLGP(g) and Kur(k) produce a negative excess kurtosis, the Inverse Participation Ratio (IPR) approaches its maximum value of 1.0, indicating highly localized weights. Conversely, positive excess kurtosis results in an IPR near zero, suggesting non-localized weight distributions. For the Ising model, the integrated receptive field precisely matches the simulated field’s peak position in 26 out of 28 initial conditions (93% accuracy). The results highlight excess kurtosis as a primary driver of localization, showing the phenomenon is largely independent of other data distribution properties.

In conclusion, researchers highlight the significant contributions of the analytical approach to understanding emergent localization in neural receptive fields. This approach aligns with recent research that repositions data-distributional properties as a primary mechanism for complex behavioral patterns. Through effective analytical dynamics, the researchers found that specific data properties, particularly covariance structure and marginals, fundamentally shape localization in neural receptive fields. Also, the researchers acknowledged the current data model as a simplified abstraction of early sensory systems, recognizing limitations such as the inability to capture orientation or phase selectivity. These set promising directions for future investigative work for noise-based frameworks or expanded computational models.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Mechanisms of Localized Receptive Field Emergence in Neural Networks appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/17/mechanisms-of-localized-receptive-field-emergence-in-neural-networks/feed/ 0 66457
From Theory to Practice: Compute-Optimal Inference Strategies for Language Model https://www.marktechpost.com/2024/12/15/from-theory-to-practice-compute-optimal-inference-strategies-for-language-model/ https://www.marktechpost.com/2024/12/15/from-theory-to-practice-compute-optimal-inference-strategies-for-language-model/#respond Mon, 16 Dec 2024 00:27:18 +0000 https://www.marktechpost.com/?p=66404 Large language models (LLMs) have demonstrated remarkable performance across multiple domains, driven by scaling laws highlighting the relationship between model size, training computation, and performance. Despite significant advancements in model scaling, a critical gap exists in comprehending how computational resources during inference impact model performance post-training. The complexity arises from balancing performance improvements against the […]

The post From Theory to Practice: Compute-Optimal Inference Strategies for Language Model appeared first on MarkTechPost.

]]>

Large language models (LLMs) have demonstrated remarkable performance across multiple domains, driven by scaling laws highlighting the relationship between model size, training computation, and performance. Despite significant advancements in model scaling, a critical gap exists in comprehending how computational resources during inference impact model performance post-training. The complexity arises from balancing performance improvements against the increasing computational costs, associated with advanced inference techniques. Moreover, understanding the trade-offs between performance gains and computational expenses is crucial for developing more efficient and effective LLM inference strategies.

Existing research on LLMs has explored various strategies to enhance mathematical reasoning and problem-solving capabilities. They focus on generating step-by-step solutions, which are expanded to include solution verification and ranking methodologies. Inference strategies have ranged from deterministic methods like greedy decoding and beam search to more dynamic sampling algorithms that introduce diversity in generated sequences. More advanced techniques have emerged, including majority voting, weighted majority voting, and search-based algorithms like Monte Carlo Tree Search (MCTS). Process Reward Models (PRMs) have also gained prominence, providing a mechanism to assign rewards to intermediate reasoning steps and guide the multi-step problem-solving process.

Researchers from the Institute for Interdisciplinary Information Sciences at Tsinghua University and the School of Computer Science at Carnegie Mellon University have presented a comprehensive study on inference scaling laws and compute-optimal inference strategies. The research aims to explore the critical trade-offs between model sizes and token generation across various inference methodologies. By investigating cost-performance relationships, the researchers examine inference approaches like greedy search, majority voting, best-of-n, weighted voting, and two distinct tree search algorithms. The study reveals that smaller models can outperform larger models when equipped with advanced inference algorithms, challenging conventional assumptions about model scaling and computational efficiency.

The research methodology is structured around two primary experimental questions investigating compute-optimal inference strategies for mathematical problem-solving. Two mathematical datasets MATH, and GSM8K are selected. The experimental design uses multiple policy models, including Pythia models, math-specialized Llemma models, and Mistral-7B, to explore performance variations across different model sizes and architectures. A consistent Llemma-34B reward model fine-tuned on the Math-Shepherd synthetic dataset, is utilized to evaluate solution quality. Each experimental configuration is executed multiple times to ensure robust and reliable results, allowing comprehensive statistical analysis of performance scaling and computational efficiency across different inference strategies and model sizes.

The results show that Llemma-7B achieves competitive accuracy with Llemma-34B while requiring approximately 50% less computational resources. This finding suggests that smaller models when paired with appropriate inference strategies, can deliver more favorable cost-performance trade-offs than the larger models. Moreover, the REBASE inference strategy consistently proves Pareto-optimal across various settings and outperforms sampling-based methods and traditional tree search algorithms like MCTS. Notably, REBASE achieves higher accuracy with substantially lower computational budgets, a novel finding that challenges previous assumptions about computational complexity in inference strategies.

In conclusion, researchers provide critical insights into compute-optimal inference strategies for LLMs, offering three fundamental conclusions. First, the study demonstrates that smaller models using complex inference techniques can outperform larger models within constrained computational budgets. Second, the research reveals the fundamental limitations of sampling-based majority voting strategies. Third, the novel REBASE tree search method emerges as a groundbreaking inference strategy, proving Pareto-optimal across tested compute budgets and surpassing established methods. Lastly, the limitations of this research include its focus on mathematical problem-solving and proposing future research directions exploring inference scaling laws across diverse task domains.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post From Theory to Practice: Compute-Optimal Inference Strategies for Language Model appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/15/from-theory-to-practice-compute-optimal-inference-strategies-for-language-model/feed/ 0 66404
Researchers from CMU and Bosch AI Introduce New Insights on Test-Time Adaptation for Distribution Shifts https://www.marktechpost.com/2024/12/13/researchers-from-cmu-and-bosch-ai-introduce-new-insights-on-test-time-adaptation-for-distribution-shifts/ https://www.marktechpost.com/2024/12/13/researchers-from-cmu-and-bosch-ai-introduce-new-insights-on-test-time-adaptation-for-distribution-shifts/#respond Sat, 14 Dec 2024 01:10:49 +0000 https://www.marktechpost.com/?p=66338 Neural networks face significant challenges in generalizing to out-of-distribution (OOD) data that deviates from the in-distribution (ID) training data. This generalization problem poses critical reliability issues in practical machine learning applications. Recent studies have uncovered interesting empirical laws describing model behaviors across distribution shift benchmarks, notably the “accuracy-on-the-line” (ACL) and “agreement-on-the-line” (AGL) phenomena. However, Empirical […]

The post Researchers from CMU and Bosch AI Introduce New Insights on Test-Time Adaptation for Distribution Shifts appeared first on MarkTechPost.

]]>

Neural networks face significant challenges in generalizing to out-of-distribution (OOD) data that deviates from the in-distribution (ID) training data. This generalization problem poses critical reliability issues in practical machine learning applications. Recent studies have uncovered interesting empirical laws describing model behaviors across distribution shift benchmarks, notably the “accuracy-on-the-line” (ACL) and “agreement-on-the-line” (AGL) phenomena. However, Empirical evidence shows that linear performance trends can catastrophically break down across different distribution shift scenarios, e.g. models with high in-distribution accuracy (92-95%) can experience dramatic OOD accuracy drops, ranging from 10-50%, rendering traditional performance prediction methods unreliable and unpredictable.

Existing research has explored various approaches to understanding and mitigating distribution shift challenges in neural networks. Theoretical studies have investigated the conditions under which accuracy and agreement linear trends hold or break down. Researchers discovered that certain transformations to data distribution, such as adding anisotropic Gaussian noise, can disrupt the linear correlation between in-distribution and out-of-distribution performance. Test-time adaptation techniques have emerged as a promising direction to enhance model robustness, employing strategies like self-supervision learning, batch normalization parameter updates, and pseudo-label generation. These methods aim to create more adaptable models to maintain performance across varying data distributions.

Researchers from Carnegie Mellon University and Bosch Center for AI have proposed a novel approach to address distribution shift challenges in neural networks. Their key finding reveals that recent test-time adaptation (TTA) methods improve OOD performance and strengthen the ACL and agreement-on-the-line (AGL) trends in models. The researchers show that TTA can transform complex distribution shifts into more predictable transformations in the feature embedding space. The method collapses intricate data distribution changes into a singular “scaling” variable, enabling a more precise estimation of model performance across different distribution shifts. This provides a systematic approach for selecting optimal hyperparameters and adaptation strategies without requiring labeled OOD data.

The proposed method’s architecture uses a comprehensive experimental framework that rigorously evaluates TTA techniques across diverse distribution shifts. The experimental setup includes 15 failure shifts across CIFAR10-C, CIFAR100-C, and ImageNet-C datasets to focus on scenarios with historically weak performance correlations. An extensive model collection spanning over 30 different architectures is used, including convolutional neural networks like VGG, ResNet, DenseNet, MobileNet, and Vision Transformers such as ViTs, DeiT, and SwinT. Seven state-of-the-art test-time adaptation methods were investigated using diverse training strategies like self-supervision, different parameter updating approaches targeting batch normalization layers, layer normalization layers, and feature extractors.

The experimental results reveal a remarkable transformation in model performance after applying TTA techniques. In distribution shifts previously characterized by weak correlation trends, such as CIFAR10-C Gaussian Noise, ImageNet-C Shot Noise, Camelyon17-WILDS, and iWildCAM-WILDS the correlation coefficients dramatically improved. Specifically, methods like TENT show extraordinary improvements, transforming low correlation trends to highly consistent linear relationships between in-distribution and out-of-distribution accuracy and agreement metrics. These observations remained consistent across multiple distribution shifts and adaptation methods. Moreover, models adapted using identical methods but with varied hyperparameters show strong linear trends across different distribution scenarios.

In conclusion, researchers highlight a significant breakthrough in understanding TTA techniques across distribution shifts. By demonstrating that recent TTA methods can substantially strengthen AGL trends across various scenarios, the study reveals how complex distribution shifts can be reduced to more predictable transformations. This observation enables more precise OOD performance estimation without requiring labeled data. However, there are potential limitations, especially the need for sufficient ID data to estimate agreement rates. Lastly, this research opens promising avenues for future research in developing fully test-time methods for observing and leveraging AGL trends.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Researchers from CMU and Bosch AI Introduce New Insights on Test-Time Adaptation for Distribution Shifts appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/13/researchers-from-cmu-and-bosch-ai-introduce-new-insights-on-test-time-adaptation-for-distribution-shifts/feed/ 0 66338