Open Source Category - MarkTechPost https://www.marktechpost.com/category/technology/open-source/ An Artificial Intelligence News Platform Fri, 27 Dec 2024 20:16:20 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 https://www.marktechpost.com/wp-content/uploads/2022/04/cropped-Favicon-512-x-512-1-1-32x32.png Open Source Category - MarkTechPost https://www.marktechpost.com/category/technology/open-source/ 32 32 127842392 Meet SemiKong: The World’s First Open-Source Semiconductor-Focused LLM https://www.marktechpost.com/2024/12/27/meet-semikong-the-worlds-first-open-source-semiconductor-focused-llm/ https://www.marktechpost.com/2024/12/27/meet-semikong-the-worlds-first-open-source-semiconductor-focused-llm/#respond Fri, 27 Dec 2024 20:16:13 +0000 https://www.marktechpost.com/?p=66760 The semiconductor industry enables advancements in consumer electronics, automotive systems, and cutting-edge computing technologies. The production of semiconductors involves sophisticated processes that demand unparalleled precision and expertise. These processes include chip design, manufacturing, testing, and optimization, each stage requiring deep domain knowledge. The field has traditionally depended on seasoned engineers whose experience has been built […]

The post Meet SemiKong: The World’s First Open-Source Semiconductor-Focused LLM appeared first on MarkTechPost.

]]>

The semiconductor industry enables advancements in consumer electronics, automotive systems, and cutting-edge computing technologies. The production of semiconductors involves sophisticated processes that demand unparalleled precision and expertise. These processes include chip design, manufacturing, testing, and optimization, each stage requiring deep domain knowledge. The field has traditionally depended on seasoned engineers whose experience has been built over decades. However, the industry faces a significant challenge: the rapid retirement of veteran experts, creating a knowledge gap that threatens innovation and efficiency. This growing concern has prompted companies to explore AI as a viable solution for capturing, scaling, and leveraging expert knowledge. Also, the cost and time associated with chip design and manufacturing must be minimized to meet market demands. These challenges highlight the limitations of traditional methods and emphasize the necessity of tailored AI solutions.

Existing approaches to these challenges include generalized AI models and basic automation tools. While these methods have been beneficial in analyzing data and improving decision-making, they often fall short in addressing the unique complexities of the semiconductor industry. General-purpose AI tools, for instance, lack the domain-specific understanding required to analyze intricate manufacturing processes effectively. As a result, companies cannot fully bridge the gap between theoretical AI capabilities and practical industry needs, leaving room for specialized solutions to transform the field.

Researchers from Meta, AITOMATIC, and other collaborators under the Foundation Models workgroup of the AI Alliance have introduced SemiKong. SemiKong represents the world’s first semiconductor-focused large language model (LLM), designed using the Llama 3.1 platform. This model was fine-tuned with extensive semiconductor-specific datasets, including industry documents, research papers, and anonymized operational data. Unlike generic AI systems, SemiKong is tailored to understand semiconductor processes’ unique terminology and requirements. By integrating this model with the AITOMATIC Domain-Expert Agents (DXAs), companies can effectively leverage AI tools to address specific industry challenges. These innovations aim to reduce costs, accelerate development timelines, and promote collaboration across the semiconductor sector.

The technology behind SemiKong is built on advanced AI and neurosymbolic architectures. AITOMATIC’s DXAs operate through a structured three-phase lifecycle: 

  1. Capturing domain expertise
  2. Training the model with synthetic and structured data
  3. Applying the resulting system in real-world scenarios 

SemiKong plays a central role in this ecosystem, acting as the “brain” for complex reasoning and decision-making tasks. Lightweight model versions, such as Llama 3.2, complement the main system by enabling faster data access and analysis in resource-constrained environments. These models integrate seamlessly with manufacturing systems and IoT platforms, allowing companies to optimize workflows, predict maintenance needs, and improve decision-making.

SemiKong has outperformed several closed-source language models in generating semiconductor-specific content and understanding complex processes. This has led to tangible benefits, including a 20-30% reduction in time to market for new chip designs and a 15-25% improvement in first-time-right manufacturing outcomes. These tools have also improved the onboarding process for new engineers, accelerating their learning curve by 40-50%. In one example, SemiKong-enabled DXAs reduced the time required for etching recipe formulation, which typically takes hours to minutes.

The key takeaways from the research underscore the significance of SemiKong and DXAs in the semiconductor field:

  1. DXAs effectively capture and structure the knowledge of veteran engineers, ensuring that critical expertise is preserved and scaled for future use.  
  2. SemiKong reduces chip design time-to-market by up to 30%, significantly cutting costs and improving operational efficiency.  
  3. By simplifying and expediting the onboarding process, DXAs help new engineers become productive faster, reducing the industry’s reliance on seasoned experts.  
  4. Integrating IoT platforms enables real-time parameter calibration and predictive maintenance, enhancing equipment performance and reliability.

In conclusion, the research highlights a pioneering solution to one of the semiconductor industry’s most pressing challenges: the loss of critical domain expertise. By introducing SemiKong and DXAs, the researchers have provided a comprehensive framework that preserves knowledge and enhances productivity and innovation. These advancements can potentially reshape semiconductor manufacturing, offering scalable, cost-effective solutions to address the field’s complexities. Integrating AI tools like SemiKong is crucial for a more efficient and resilient semiconductor industry.


Check out the Details and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Meet SemiKong: The World’s First Open-Source Semiconductor-Focused LLM appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/27/meet-semikong-the-worlds-first-open-source-semiconductor-focused-llm/feed/ 0 66760
DeepSeek-AI Just Released DeepSeek-V3: A Strong Mixture-of-Experts (MoE) Language Model with 671B Total Parameters with 37B Activated for Each Token https://www.marktechpost.com/2024/12/26/deepseek-ai-just-released-deepseek-v3-a-strong-mixture-of-experts-moe-language-model-with-671b-total-parameters-with-37b-activated-for-each-token/ https://www.marktechpost.com/2024/12/26/deepseek-ai-just-released-deepseek-v3-a-strong-mixture-of-experts-moe-language-model-with-671b-total-parameters-with-37b-activated-for-each-token/#respond Fri, 27 Dec 2024 04:32:12 +0000 https://www.marktechpost.com/?p=66743 The field of Natural Language Processing (NLP) has made significant strides with the development of large-scale language models (LLMs). However, this progress has brought its own set of challenges. Training and inference require substantial computational resources, the availability of diverse, high-quality datasets is critical, and achieving balanced utilization in Mixture-of-Experts (MoE) architectures remains complex. These […]

The post DeepSeek-AI Just Released DeepSeek-V3: A Strong Mixture-of-Experts (MoE) Language Model with 671B Total Parameters with 37B Activated for Each Token appeared first on MarkTechPost.

]]>

The field of Natural Language Processing (NLP) has made significant strides with the development of large-scale language models (LLMs). However, this progress has brought its own set of challenges. Training and inference require substantial computational resources, the availability of diverse, high-quality datasets is critical, and achieving balanced utilization in Mixture-of-Experts (MoE) architectures remains complex. These factors contribute to inefficiencies and increased costs, posing obstacles to scaling open-source models to match proprietary counterparts. Moreover, ensuring robustness and stability during training is an ongoing issue, as even minor instabilities can disrupt performance and necessitate costly interventions.

DeepSeek-AI just gave a Christmas present to the AI world by releasing DeepSeek-V3, a Mixture-of-Experts (MoE) language model featuring 671 billion parameters, with 37 billion activated per token. The model builds on proven architectures such as Multi-Head Latent Attention (MLA) and DeepSeekMoE, which were refined in earlier versions. DeepSeek-V3 has been trained on an extensive dataset of 14.8 trillion high-quality tokens, ensuring a broad and diverse knowledge base. Importantly, the model is fully open-source, with accessible models, papers, and training frameworks for the research community to explore.

Technical Details and Benefits

DeepSeek-V3 incorporates several innovations aimed at addressing long-standing challenges in the field. Its auxiliary-loss-free load balancing strategy ensures efficient distribution of computational loads across experts while maintaining model performance. The adoption of a multi-token prediction training objective enhances data efficiency and facilitates faster inference through speculative decoding. Additionally, FP8 mixed precision training improves computational efficiency by reducing GPU memory usage without sacrificing accuracy. The DualPipe algorithm further minimizes pipeline bubbles by overlapping computation and communication phases, reducing all-to-all communication overhead. These advancements enable DeepSeek-V3 to process 60 tokens per second during inference—a significant improvement over its predecessor.

Performance Insights and Results

DeepSeek-V3 has been rigorously evaluated across multiple benchmarks, demonstrating strong performance. On educational datasets like MMLU and MMLU-Pro, it achieved scores of 88.5 and 75.9, respectively, outperforming other open-source models. In mathematical reasoning tasks, it set new standards with a score of 90.2 on MATH-500. The model also performed exceptionally in coding benchmarks such as LiveCodeBench. Despite these achievements, the training cost was kept relatively low at $5.576 million, requiring only 2.788 million H800 GPU hours. These results highlight DeepSeek-V3’s efficiency and its potential to make high-performance LLMs more accessible.

Conclusion

DeepSeek-V3 represents a meaningful advancement in open-source NLP research. By tackling the computational and architectural challenges associated with large-scale language models, it establishes a new benchmark for efficiency and performance. Its innovative training methods, scalable architecture, and strong evaluation results make it a competitive alternative to proprietary models. DeepSeek-AI’s commitment to open-source development ensures that the broader research community can benefit from its advancements.


Check out the Paper, GitHub Page, and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post DeepSeek-AI Just Released DeepSeek-V3: A Strong Mixture-of-Experts (MoE) Language Model with 671B Total Parameters with 37B Activated for Each Token appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/26/deepseek-ai-just-released-deepseek-v3-a-strong-mixture-of-experts-moe-language-model-with-671b-total-parameters-with-37b-activated-for-each-token/feed/ 0 66743
Qwen Team Releases QvQ: An Open-Weight Model for Multimodal Reasoning https://www.marktechpost.com/2024/12/24/qwen-team-releases-qvq-an-open-weight-model-for-multimodal-reasoning/ https://www.marktechpost.com/2024/12/24/qwen-team-releases-qvq-an-open-weight-model-for-multimodal-reasoning/#respond Wed, 25 Dec 2024 05:11:18 +0000 https://www.marktechpost.com/?p=66688 Multimodal reasoning—the ability to process and integrate information from diverse data sources such as text, images, and video—remains a demanding area of research in artificial intelligence (AI). Despite advancements, many models still struggle with contextually accurate and efficient cross-modal understanding. These challenges often stem from limitations in scale, narrowly focused datasets, and restricted access to […]

The post Qwen Team Releases QvQ: An Open-Weight Model for Multimodal Reasoning appeared first on MarkTechPost.

]]>

Multimodal reasoning—the ability to process and integrate information from diverse data sources such as text, images, and video—remains a demanding area of research in artificial intelligence (AI). Despite advancements, many models still struggle with contextually accurate and efficient cross-modal understanding. These challenges often stem from limitations in scale, narrowly focused datasets, and restricted access to advanced models. Proprietary systems, in particular, can hinder collaborative progress, leaving a gap in the development of more versatile and inclusive AI systems. The need for accessible, high-performing tools is clear as the field works toward practical, generalizable solutions.

The Qwen Team has addressed these challenges by releasing QvQ, an open-weight model specifically designed for multimodal reasoning. Building on the foundation of Qwen2-VL-72B, QvQ integrates architectural improvements that enhance cross-modal reasoning. Its open-weight design underscores the team’s commitment to making advanced AI more accessible.

Technical Innovations and Benefits

QvQ’s architecture is tailored to handle complex multimodal reasoning tasks with efficiency and precision. It employs a hierarchical structure that integrates visual and linguistic information while preserving contextual nuances. This design ensures that computational resources are used effectively without sacrificing accuracy. Additionally, QvQ’s alignment mechanism for text and visual inputs is based on advanced transformer architectures, enabling highly accurate cross-modal embeddings.

With 72 billion parameters, QvQ is built for scalability, capable of handling large and diverse datasets. The open-weight nature of the model allows researchers to customize it for specific applications across domains such as healthcare, education, and creative industries. This flexibility makes QvQ a valuable resource for addressing domain-specific challenges with precision.

Results and Insights

Preliminary evaluations show that QvQ delivers strong performance across key benchmarks in multimodal reasoning. The model has achieved notable results on datasets like Visual7W and VQA, demonstrating its ability to process and respond to complex visual queries with accuracy. These outcomes highlight how QvQ builds on the strengths of Qwen2-VL-72B while incorporating meaningful enhancements.

One of QvQ’s key strengths is its generalization ability. Unlike models that require significant fine-tuning for each new task, QvQ performs effectively across diverse scenarios with minimal adjustment. Its pre-trained architecture, combined with evaluations on cross-domain datasets, underscores its adaptability and potential as a universal tool for multimodal reasoning.

Conclusion

The release of QvQ is a notable step forward in developing advanced multimodal AI systems. By addressing critical challenges and offering a scalable, open-weight solution, the Qwen Team provides a resource that fosters collaboration and innovation. QvQ’s combination of robust technical features and accessibility positions it as a valuable tool for researchers and practitioners. As its applications are explored further, QvQ has the potential to make significant contributions across various fields, advancing the capabilities of AI in multimodal reasoning and beyond.


Check out the demo, model, and details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Qwen Team Releases QvQ: An Open-Weight Model for Multimodal Reasoning appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/24/qwen-team-releases-qvq-an-open-weight-model-for-multimodal-reasoning/feed/ 0 66688
Microsoft Researchers Release AIOpsLab: An Open-Source Comprehensive AI Framework for AIOps Agents https://www.marktechpost.com/2024/12/22/microsoft-researchers-release-aiopslab-an-open-source-comprehensive-ai-framework-for-aiops-agents/ https://www.marktechpost.com/2024/12/22/microsoft-researchers-release-aiopslab-an-open-source-comprehensive-ai-framework-for-aiops-agents/#respond Mon, 23 Dec 2024 06:55:08 +0000 https://www.marktechpost.com/?p=66640 The increasing complexity of cloud computing has brought both opportunities and challenges. Enterprises now depend heavily on intricate cloud-based infrastructures to ensure their operations run smoothly. Site Reliability Engineers (SREs) and DevOps teams are tasked with managing fault detection, diagnosis, and mitigation—tasks that have become more demanding with the rise of microservices and serverless architectures. […]

The post Microsoft Researchers Release AIOpsLab: An Open-Source Comprehensive AI Framework for AIOps Agents appeared first on MarkTechPost.

]]>

The increasing complexity of cloud computing has brought both opportunities and challenges. Enterprises now depend heavily on intricate cloud-based infrastructures to ensure their operations run smoothly. Site Reliability Engineers (SREs) and DevOps teams are tasked with managing fault detection, diagnosis, and mitigation—tasks that have become more demanding with the rise of microservices and serverless architectures. While these models enhance scalability, they also introduce numerous potential failure points. For instance, a single hour of downtime on platforms like Amazon AWS can result in substantial financial losses. Although efforts to automate IT operations with AIOps agents have progressed, they often fall short due to a lack of standardization, reproducibility, and realistic evaluation tools. Existing approaches tend to address specific aspects of operations, leaving a gap in comprehensive frameworks for testing and improving AIOps agents under practical conditions.

To tackle these challenges, Microsoft researchers, along with a team of researchers from the University of California, Berkeley, the University of Illinois Urbana-Champaign, the Indian Institue of Science, and Agnes Scott College, have developed AIOpsLab, an evaluation framework designed to enable the systematic design, development, and enhancement of AIOps agents. AIOpsLab aims to address the need for reproducible, standardized, and scalable benchmarks. At its core, AIOpsLab integrates real-world workloads, fault injection capabilities, and interfaces between agents and cloud environments to simulate production-like scenarios. This open-source framework covers the entire lifecycle of cloud operations, from detecting faults to resolving them. By offering a modular and adaptable platform, AIOpsLab supports researchers and practitioners in advancing the reliability of cloud systems and reducing dependence on manual interventions.

Technical Details and Benefits

The AIOpsLab framework features several key components. The orchestrator, a central module, mediates interactions between agents and cloud environments by providing task descriptions, action APIs, and feedback. Fault and workload generators replicate real-world conditions to challenge the agents being tested. Observability, another cornerstone of the framework, provides comprehensive telemetry data, such as logs, metrics, and traces, to aid in fault diagnosis. This flexible design allows integration with diverse architectures, including Kubernetes and microservices. By standardizing the evaluation of AIOps tools, AIOpsLab ensures consistent and reproducible testing environments. It also offers researchers valuable insights into agent performance, enabling continuous improvements in fault localization and resolution capabilities.

Results and Insights

In one case study, AIOpsLab’s capabilities were evaluated using the SocialNetwork application from DeathStarBench. Researchers introduced a realistic fault—a microservice misconfiguration—and tested an LLM-based agent employing the ReAct framework powered by GPT-4. The agent identified and resolved the issue within 36 seconds, demonstrating the framework’s effectiveness in simulating real-world conditions. Detailed telemetry data proved essential for diagnosing the root cause, while the orchestrator’s API design facilitated the agent’s balanced approach between exploratory and targeted actions. These findings underscore AIOpsLab’s potential as a robust benchmark for assessing and improving AIOps agents.

Conclusion

AIOpsLab offers a thoughtful approach to advancing autonomous cloud operations. By addressing the gaps in existing tools and providing a reproducible and realistic evaluation framework, it supports the ongoing development of reliable and efficient AIOps agents. With its open-source nature, AIOpsLab encourages collaboration and innovation among researchers and practitioners. As cloud systems grow in scale and complexity, frameworks like AIOpsLab will become essential for ensuring operational reliability and advancing the role of AI in IT operations.


Check out the Paper, GitHub Page, and Microsoft Details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Microsoft Researchers Release AIOpsLab: An Open-Source Comprehensive AI Framework for AIOps Agents appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/22/microsoft-researchers-release-aiopslab-an-open-source-comprehensive-ai-framework-for-aiops-agents/feed/ 0 66640
Meet FineFineWeb: An Open-Sourced Automatic Classification System for Fine-Grained Web Data https://www.marktechpost.com/2024/12/21/meet-finefineweb-an-open-sourced-automatic-classification-system-for-fine-grained-web-data/ https://www.marktechpost.com/2024/12/21/meet-finefineweb-an-open-sourced-automatic-classification-system-for-fine-grained-web-data/#respond Sat, 21 Dec 2024 20:46:23 +0000 https://www.marktechpost.com/?p=66594 Multimodal Art Projection (M-A-P) researchers have introduced FineFineWeb, a large open-source automatic classification system for fine-grained web data. The project decomposes the deduplicated Fineweb into 67 unique categories with extensive seed data. Moreover, a comprehensive correlation analysis between vertical categories and common benchmarks and detailed URL and content distribution analysis are conducted. The system provides […]

The post Meet FineFineWeb: An Open-Sourced Automatic Classification System for Fine-Grained Web Data appeared first on MarkTechPost.

]]>

Multimodal Art Projection (M-A-P) researchers have introduced FineFineWeb, a large open-source automatic classification system for fine-grained web data. The project decomposes the deduplicated Fineweb into 67 unique categories with extensive seed data. Moreover, a comprehensive correlation analysis between vertical categories and common benchmarks and detailed URL and content distribution analysis are conducted. The system provides specialized test sets for PPL evaluation, featuring both “small cup” validation and “medium cup” test options. Complete training materials for FastText and Bert implementation accompany the dataset, with upcoming suggestions for data proportioning based on RegMix methodology.

The data construction process for FineFineWeb follows a systematic multi-step workflow. The initial deduplication of FineWeb employs exact deduplication and MinHash techniques. URL labeling utilizes GPT-4 to process the top million root URLs, categorizing them into Domain-of-Interest (DoI) and Domain-of-Non-Interest (DoNI) URLs. Further, the coarse recall phase involves domain-specific sampling based on the labeled root URLs, with Qwen2-7B-Instruct handling the labeling of 500K positive and negative data points. FastText models, trained on this labeled data, perform coarse recall operations across FineWeb to generate Coarse DoI Data.

The fine recall stage advances the data refinement process using Qwen2-72B-Instruct to label the Coarse DoI Data, creating 100K Dol positive and 100K Dol negative data points. After that, a BERT model, trained on this labeled data, performs fine recall to produce the final DoI subset of FineFineWeb. Moreover, the entire coarse-fine recall iteration undergoes three rounds with specific modifications: 

  • FastText is re-trained using updated seed data, which combines BERT-recalled samples, BERT-dropped samples, and previously labeled seed data.
  • The BERT model keeps frozen during subsequent iterations.
  • Steps for training FastText, coarse recall, and fine recall are repeated without re-labeling data with Qwen2-Instruct models.

The domain-domain similarity Analysis employs a sophisticated analytical approach using proportional weighted sampling across domain subsets, processing one billion tokens from the domain subsets. Then the BGE-M3 model is used to generate two types of embeddings: domain embeddings from domain subset samples and benchmark embeddings from benchmark samples. The analysis concludes by calculating MMD and Wasserstein distances between domain embeddings and benchmark embeddings to quantify domain relationships.

The similarity analysis reveals several key patterns in domain-benchmark relationships. Code-related benchmarks (MBPP and HumanEval) show significant distance from most domains except mathematics, indicating limited code representation in the dataset. General knowledge benchmarks (Hellaswag, ARC, MMLU, BoolQ) demonstrate close relationships with multiple domains, suggesting broad knowledge distribution, while excluding gambling content. Moreover, GSM8K and TriviaQA exhibit notable domain-specific variations, particularly in mathematics and factual content. Lastly, the gambling domain stands distinctly separate, showing minimal overlap with other domains and benchmarks.

The domain-domain duplication analysis examines URL uniqueness across domains using TF-IDF values. High TF-IDF scores indicate domain-specific unique URLs, while low values suggest common URLs across domains. The analysis reveals minimal duplication across most domains, with exceptions in topicality, pet, and atmospheric science categories. The domain-benchmark correlation study, conducted across 28 models, compares domain-specific performance (BPC) rankings with benchmark performance rankings using Spearman correlation. STEM-related domains show stronger correlations with reasoning-focused benchmarks (ARC, MMLU, GSM8K, HumanEval, MBPP), while knowledge-intensive domains like literature and history correlate higher with fact-based benchmarks like TriviaQA.


Check out the Dataset and Tweet. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Meet FineFineWeb: An Open-Sourced Automatic Classification System for Fine-Grained Web Data appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/21/meet-finefineweb-an-open-sourced-automatic-classification-system-for-fine-grained-web-data/feed/ 0 66594
LightOn and Answer.ai Releases ModernBERT: A New Model Series that is a Pareto Improvement over BERT with both Speed and Accuracy https://www.marktechpost.com/2024/12/20/lighton-and-answer-ai-releases-modernbert-a-new-model-series-that-is-a-pareto-improvement-over-bert-with-both-speed-and-accuracy/ https://www.marktechpost.com/2024/12/20/lighton-and-answer-ai-releases-modernbert-a-new-model-series-that-is-a-pareto-improvement-over-bert-with-both-speed-and-accuracy/#respond Sat, 21 Dec 2024 02:38:34 +0000 https://www.marktechpost.com/?p=66573 Since the release of BERT in 2018, encoder-only transformer models have been widely used in natural language processing (NLP) applications due to their efficiency in retrieval and classification tasks. However, these models face notable limitations in contemporary applications. Their sequence length, capped at 512 tokens, hampers their ability to handle long-context tasks effectively. Furthermore, their […]

The post LightOn and Answer.ai Releases ModernBERT: A New Model Series that is a Pareto Improvement over BERT with both Speed and Accuracy appeared first on MarkTechPost.

]]>

Since the release of BERT in 2018, encoder-only transformer models have been widely used in natural language processing (NLP) applications due to their efficiency in retrieval and classification tasks. However, these models face notable limitations in contemporary applications. Their sequence length, capped at 512 tokens, hampers their ability to handle long-context tasks effectively. Furthermore, their architecture, vocabulary, and computational efficiency have not kept pace with advancements in hardware and training methodologies. These shortcomings become especially apparent in retrieval-augmented generation (RAG) pipelines, where encoder-based models provide context for large language models (LLMs). Despite their critical role, these models often rely on outdated designs, limiting their capacity to meet evolving demands.

A team of researchers from LightOn, Answer.ai, Johns Hopkins University, NVIDIA, and Hugging Face have sought to address these challenges with the introduction of ModernBERT, an open family of encoder-only models. ModernBERT brings several architectural enhancements, extending the context length to 8,192 tokens—a significant improvement over the original BERT. This increase enables it to perform well on long-context tasks. The integration of Flash Attention 2 and rotary positional embeddings (RoPE) enhances computational efficiency and positional understanding. Trained on 2 trillion tokens from diverse domains, including code, ModernBERT demonstrates improved performance across multiple tasks. It is available in two configurations: base (139M parameters) and large (395M parameters), offering options tailored to different needs while consistently outperforming models like RoBERTa and DeBERTa.

Technical Details and Benefits

ModernBERT incorporates several advancements in transformer design. Flash Attention enhances memory and computational efficiency, while alternating global-local attention mechanisms optimize long-context processing. RoPE embeddings improve positional understanding, ensuring effective performance across varied sequence lengths. The model also employs GeGLU activation functions and a deep, narrow architecture for a balanced trade-off between efficiency and capability. Stability during training is further ensured through pre-normalization blocks and the use of the StableAdamW optimizer with a trapezoidal learning rate schedule. These refinements make ModernBERT not only faster but also more resource-efficient, particularly for inference tasks on common GPUs.

Results and Insights

ModernBERT demonstrates strong performance across benchmarks. On the General Language Understanding Evaluation (GLUE) benchmark, it surpasses existing base models, including DeBERTaV3. In retrieval tasks like Dense Passage Retrieval (DPR) and ColBERT multi-vector retrieval, it achieves higher nDCG@10 scores compared to its peers. The model’s capabilities in long-context tasks are evident in the MLDR benchmark, where it outperforms older models and specialized long-context models such as GTE-en-MLM and NomicBERT. ModernBERT also excels in code-related tasks, including CodeSearchNet and StackOverflow-QA, benefiting from its code-aware tokenizer and diverse training data. Additionally, it processes significantly larger batch sizes than its predecessors, making it suitable for large-scale applications while maintaining memory efficiency.

Conclusion

ModernBERT represents a thoughtful evolution of encoder-only transformer models, integrating modern architectural improvements with robust training methodologies. Its extended context length and enhanced efficiency address the limitations of earlier models, making it a versatile tool for a variety of NLP applications, including semantic search, classification, and code retrieval. By modernizing the foundational BERT architecture, ModernBERT meets the demands of contemporary NLP tasks. Released under the Apache 2.0 license and hosted on Hugging Face, it provides an accessible and efficient solution for researchers and practitioners seeking to advance the state of the art in NLP.


Check out the Paper, Blog, and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post LightOn and Answer.ai Releases ModernBERT: A New Model Series that is a Pareto Improvement over BERT with both Speed and Accuracy appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/20/lighton-and-answer-ai-releases-modernbert-a-new-model-series-that-is-a-pareto-improvement-over-bert-with-both-speed-and-accuracy/feed/ 0 66573
Meet Moxin LLM 7B: A Fully Open-Source Language Model Developed in Accordance with the Model Openness Framework (MOF) https://www.marktechpost.com/2024/12/19/meet-moxin-llm-7b-a-fully-open-source-language-model-developed-in-accordance-with-the-model-openness-framework-mof/ https://www.marktechpost.com/2024/12/19/meet-moxin-llm-7b-a-fully-open-source-language-model-developed-in-accordance-with-the-model-openness-framework-mof/#respond Fri, 20 Dec 2024 07:19:53 +0000 https://www.marktechpost.com/?p=66556 The rapid development of Large Language Models (LLMs) has transformed natural language processing (NLP). Proprietary models like GPT-4 and Claude 3 have set high standards in terms of performance but often come with drawbacks such as high costs, limited accessibility, and opaque methodologies. Meanwhile, many so-called open-source models fail to fully embody the ideals of […]

The post Meet Moxin LLM 7B: A Fully Open-Source Language Model Developed in Accordance with the Model Openness Framework (MOF) appeared first on MarkTechPost.

]]>

The rapid development of Large Language Models (LLMs) has transformed natural language processing (NLP). Proprietary models like GPT-4 and Claude 3 have set high standards in terms of performance but often come with drawbacks such as high costs, limited accessibility, and opaque methodologies. Meanwhile, many so-called open-source models fail to fully embody the ideals of openness, withholding key elements like training data and fine-tuning processes and often applying restrictive licenses. These practices hinder innovation, reduce reproducibility, and complicate adoption across industries. Tackling these barriers is crucial for fostering trust, collaboration, and progress in the AI ecosystem.

Introducing Moxin LLM 7B

Researchers from Northeastern University, Harvard University, Cornell University, Tulane University, University of Washington, Roboraction.ai, Futurewei Technologies, and AIBAO LLC release Moxin LLM 7B to address these challenges, guided by the principles of transparency and inclusivity. Developed under the Model Openness Framework (MOF), it provides comprehensive access to its pre-training code, datasets, configurations, and intermediate checkpoints. This fully open-source model is available in two versions—Base and Chat—and achieves the highest MOF classification, “open science.” With a 32k token context size and features like grouped-query attention (GQA) and sliding window attention (SWA), Moxin LLM 7B offers a robust yet accessible option for NLP and coding applications. It is a valuable tool for researchers, developers, and businesses seeking flexible and high-performing solutions.

Technical Innovations and Key Benefits

Moxin LLM 7B builds on the architecture of Mistral, enhancing it with an expanded 36-block design. This extension integrates GQA to improve memory efficiency and SWA to effectively process long sequences. The inclusion of a rolling buffer cache optimizes memory usage, making the model ideal for handling extended contexts in real-world applications.

The model’s training process relies on carefully curated data sources, including SlimPajama and DCLM-BASELINE for text, and The Stack for coding. By leveraging Colossal-AI’s advanced parallelization techniques, the model was trained on over 2 trillion tokens through three phases, each progressively increasing context length and refining specific capabilities.

These design choices ensure several key benefits. First, the open-source nature of Moxin LLM 7B enables customization and adaptability across diverse domains. Second, its strong performance in zero-shot and few-shot evaluations demonstrates its capability to handle complex reasoning, coding, and multitask challenges. Finally, the model’s balance between computational efficiency and output quality makes it practical for both research and real-world use cases.

Performance Insights

Moxin LLM 7B has undergone rigorous evaluation against comparable models. In zero-shot settings, it outperforms alternatives like LLaMA 2-7B and Gemma-7B on benchmarks including the AI2 Reasoning Challenge, HellaSwag, and PIQA. For example, the fine-tuned version achieves an impressive 82.24% on PIQA, marking a significant improvement over existing state-of-the-art models.

The model’s few-shot evaluation results further underscore its strengths, particularly in tasks requiring advanced reasoning and domain-specific knowledge. Assessments using MTBench highlight the capabilities of Moxin Chat 7B as an interactive assistant, achieving competitive scores that often rival those of larger, proprietary models.

Conclusion

Moxin LLM 7B stands out as a significant contribution to the open-source LLM landscape. By fully embracing the principles of the Model Openness Framework, it addresses critical issues of transparency, reproducibility, and accessibility that often challenge other models. With its technical sophistication, robust performance, and commitment to openness, Moxin LLM 7B offers a compelling alternative to proprietary solutions. As the role of AI continues to grow across industries, models like Moxin LLM 7B lay the groundwork for a more collaborative, inclusive, and innovative future in natural language processing and beyond.


Check out the Paper, GitHub Page, Base Model, and Chat Model. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Meet Moxin LLM 7B: A Fully Open-Source Language Model Developed in Accordance with the Model Openness Framework (MOF) appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/19/meet-moxin-llm-7b-a-fully-open-source-language-model-developed-in-accordance-with-the-model-openness-framework-mof/feed/ 0 66556
Patronus AI Open Sources Glider: A 3B State-of-the-Art Small Language Model (SLM) Judge https://www.marktechpost.com/2024/12/19/patronus-ai-open-sources-glider-a-3b-state-of-the-art-small-language-model-slm-judge/ https://www.marktechpost.com/2024/12/19/patronus-ai-open-sources-glider-a-3b-state-of-the-art-small-language-model-slm-judge/#respond Fri, 20 Dec 2024 04:42:58 +0000 https://www.marktechpost.com/?p=66545 Large Language Models (LLMs) play a vital role in many AI applications, ranging from text summarization to conversational AI. However, evaluating these models effectively remains a significant challenge. Human evaluations, while reliable, often suffer from inconsistency, high costs, and long turnaround times. Automated evaluation tools, particularly those that are closed-source, frequently lack transparency and fail […]

The post Patronus AI Open Sources Glider: A 3B State-of-the-Art Small Language Model (SLM) Judge appeared first on MarkTechPost.

]]>

Large Language Models (LLMs) play a vital role in many AI applications, ranging from text summarization to conversational AI. However, evaluating these models effectively remains a significant challenge. Human evaluations, while reliable, often suffer from inconsistency, high costs, and long turnaround times. Automated evaluation tools, particularly those that are closed-source, frequently lack transparency and fail to offer detailed, fine-grained metrics. Many such tools also struggle with explainability, leaving users uncertain about how to address identified issues. Enterprises dealing with sensitive data face additional hurdles when external APIs are involved, making privacy a pressing concern. To address these challenges, the ideal solution must be accurate, efficient, interpretable, and lightweight.

Introducing Glider: An Open-Source Solution for LLM Evaluation

Patronus AI has introduced Glider, a 3-billion parameter Small Language Model (SLM) designed to meet these needs. Glider is an open-source evaluator model that provides both quantitative and qualitative feedback for text inputs and outputs. It acts as a fast, inference-time guardrail for LLM systems, offering detailed reasoning chains and highlighting key phrases to enhance interpretability. With its compact size and robust performance, Glider is a practical alternative to larger models, enabling efficient deployment without excessive computational demands.

Key Features and Advantages

Glider is built upon the Phi-3.5-mini-instruct base model and has been fine-tuned on diverse datasets spanning 685 domains and 183 evaluation criteria. Its design emphasizes reliability, generalizability, and clarity. Key features include:

  1. Detailed Scoring: Glider offers nuanced evaluations across multiple dimensions, supporting binary, 1-3, and 1-5 Likert scales.
  2. Explainable Feedback: By providing structured reasoning and highlighting relevant text spans, Glider makes its evaluations more actionable and transparent.
  3. Efficiency: Despite its modest size, Glider delivers competitive performance without the computational demands of larger models.
  4. Multilingual Capability: Glider retains strong multilingual support, making it suitable for global applications.
  5. Open Accessibility: As an open-source tool, Glider fosters collaboration and allows for easy customization to suit specific needs.

Performance and Insights

Glider’s capabilities have been validated through rigorous testing. On the FLASK dataset, it showed strong alignment with human judgments, achieving a high Pearson’s correlation. Its explainability features, such as reasoning chains and highlight spans, received a 91.3% agreement rate from human evaluators. In subjective metrics like coherence and consistency, Glider performed comparably to much larger models, demonstrating its efficiency. Highlight spans further improved the model’s performance by reducing redundant processing and enhancing multi-metric assessments. Additionally, Glider’s ability to generalize across domains and languages highlights its versatility and practical value.

Conclusion

Glider represents a thoughtful and transparent approach to LLM evaluation, addressing key limitations of existing solutions. By combining detailed, interpretable evaluations with an efficient design, it empowers researchers, developers, and organizations to better understand and refine their models. Its open-source nature encourages community collaboration and innovation. As the demand for robust, interpretable, and efficient evaluation tools continues to grow, Glider stands out as a practical and reliable choice for a wide range of AI applications.


Check out the Paper and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Patronus AI Open Sources Glider: A 3B State-of-the-Art Small Language Model (SLM) Judge appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/19/patronus-ai-open-sources-glider-a-3b-state-of-the-art-small-language-model-slm-judge/feed/ 0 66545
Hugging Face Releases Picotron: A Tiny Framework that Solves LLM Training 4D Parallelization https://www.marktechpost.com/2024/12/19/hugging-face-releases-picotron-a-tiny-framework-that-solves-llm-training-4d-parallelization/ https://www.marktechpost.com/2024/12/19/hugging-face-releases-picotron-a-tiny-framework-that-solves-llm-training-4d-parallelization/#respond Thu, 19 Dec 2024 15:37:18 +0000 https://www.marktechpost.com/?p=66529 The rise of large language models (LLMs) has transformed natural language processing, but training these models comes with significant challenges. Training state-of-the-art models like GPT and Llama requires enormous computational resources and intricate engineering. For instance, Llama-3.1-405B needed approx. 39 million GPU hours, equivalent to 4,500 years on a single GPU. To meet these demands […]

The post Hugging Face Releases Picotron: A Tiny Framework that Solves LLM Training 4D Parallelization appeared first on MarkTechPost.

]]>

The rise of large language models (LLMs) has transformed natural language processing, but training these models comes with significant challenges. Training state-of-the-art models like GPT and Llama requires enormous computational resources and intricate engineering. For instance, Llama-3.1-405B needed approx. 39 million GPU hours, equivalent to 4,500 years on a single GPU. To meet these demands within months, engineers employ 4D parallelization across data, tensor, context, and pipeline dimensions. However, this approach often results in sprawling, complex codebases that are difficult to maintain and adapt, posing barriers to scalability and accessibility.

Hugging Face Releases Picotron: A New Approach to LLM Training

Hugging Face has introduced Picotron, a lightweight framework that offers a simpler way to handle LLM training. Unlike traditional solutions that rely on extensive libraries, Picotron streamlines 4D parallelization into a concise framework, reducing the complexity typically associated with such tasks. Building on the success of its predecessor, Nanotron, Picotron simplifies the management of parallelism across multiple dimensions. This framework is designed to make LLM training more accessible and easier to implement, allowing researchers and engineers to focus on their projects without being hindered by overly complex infrastructure.

Technical Details and Benefits of Picotron

Picotron strikes a balance between simplicity and performance. It integrates 4D parallelism across data, tensor, context, and pipeline dimensions, a task usually handled by far larger libraries. Despite its minimal footprint, Picotron performs efficiently. Testing on the SmolLM-1.7B model with eight H100 GPUs demonstrated a Model FLOPs Utilization (MFU) of approximately 50%, comparable to that achieved by larger, more complex libraries.

One of Picotron’s key advantages is its focus on reducing code complexity. By distilling 4D parallelization into a manageable and readable framework, it lowers the barriers for developers, making it easier to understand and adapt the code for specific needs. Its modular design ensures compatibility with diverse hardware setups, enhancing its flexibility for a variety of applications.

Insights and Results

Initial benchmarks highlight Picotron’s potential. On the SmolLM-1.7B model, it demonstrated efficient GPU resource utilization, delivering results on par with much larger libraries. While further testing is ongoing to confirm these results across different configurations, early data suggests that Picotron is both effective and scalable.

Beyond performance, Picotron streamlines the development workflow by simplifying the codebase. This reduction in complexity minimizes debugging efforts and accelerates iteration cycles, enabling teams to explore new architectures and training paradigms with greater ease. Additionally, Picotron has proven its scalability, supporting deployments across thousands of GPUs during the training of Llama-3.1-405B, and bridging the gap between academic research and industrial-scale applications.

Conclusion

Picotron represents a step forward in LLM training frameworks, addressing long-standing challenges associated with 4D parallelization. By offering a lightweight and accessible solution, Hugging Face has made it easier for researchers and developers to implement efficient training processes. With its simplicity, adaptability, and strong performance, Picotron is poised to play a pivotal role in the future of AI development. As further benchmarks and use cases emerge, it stands to become an essential tool for those working on large-scale model training. For organizations looking to streamline their LLM development efforts, Picotron provides a practical and effective alternative to traditional frameworks.


Check out the GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Hugging Face Releases Picotron: A Tiny Framework that Solves LLM Training 4D Parallelization appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/19/hugging-face-releases-picotron-a-tiny-framework-that-solves-llm-training-4d-parallelization/feed/ 0 66529
Microsoft AI Research Open-Sources PromptWizard: A Feedback-Driven AI Framework for Efficient and Scalable LLM Prompt Optimization https://www.marktechpost.com/2024/12/18/microsoft-ai-research-open-sources-promptwizard-a-feedback-driven-ai-framework-for-efficient-and-scalable-llm-prompt-optimization/ https://www.marktechpost.com/2024/12/18/microsoft-ai-research-open-sources-promptwizard-a-feedback-driven-ai-framework-for-efficient-and-scalable-llm-prompt-optimization/#respond Wed, 18 Dec 2024 23:26:31 +0000 https://www.marktechpost.com/?p=66499 One of the crucial factors in achieving high-quality outputs from these models lies in the design of prompts—carefully crafted input instructions that guide the model to produce the desired responses. Despite their importance, prompt creation is a labor-intensive process that often requires domain-specific knowledge and significant human effort. These limitations have spurred the development of […]

The post Microsoft AI Research Open-Sources PromptWizard: A Feedback-Driven AI Framework for Efficient and Scalable LLM Prompt Optimization appeared first on MarkTechPost.

]]>

One of the crucial factors in achieving high-quality outputs from these models lies in the design of prompts—carefully crafted input instructions that guide the model to produce the desired responses. Despite their importance, prompt creation is a labor-intensive process that often requires domain-specific knowledge and significant human effort. These limitations have spurred the development of automated systems to refine and optimize prompts efficiently.

One of the significant challenges in prompt engineering is the reliance on manual expertise to tailor prompts for each unique task. This approach is time-consuming and needs to scale more effectively for complex or domain-specific applications. Furthermore, existing methods for optimizing prompts are often restricted to open-source models that provide access to internal computations. Black-box systems, such as proprietary models accessible only via APIs, present an additional hurdle, as their internal workings are opaque, making traditional gradient-based techniques impractical. These constraints highlight the urgent need for solutions that work efficiently with limited resources while remaining effective across diverse tasks.

Currently, methods for prompt optimization can be broadly classified into two categories: continuous and discrete approaches. Continuous techniques, such as soft prompts, rely on auxiliary models to refine instructions but require substantial computational resources and are not directly applicable to black-box systems. Discrete methods, including approaches like PromptBreeder and EvoPrompt, focus on generating variations of prompts and selecting the best-performing ones based on evaluation metrics. While these approaches have shown promise, they often need more structured feedback mechanisms to improve. They need to balance exploration with task-specific refinements, leading to suboptimal results.

Researchers from Microsoft Research India have developed and open-sourced PromptWizard, an innovative AI framework for optimizing prompts in black-box LLMs. This framework employs a feedback-driven critique-and-synthesis mechanism to iteratively refine prompt instructions and in-context examples iteratively, enhancing task performance. PromptWizard stands out by combining guided exploration with structured critiques to ensure the holistic improvement of prompts. Unlike earlier methods, it aligns task-specific requirements with a systematic optimization process, offering an efficient and scalable solution for diverse NLP applications.

PromptWizard operates through two primary phases: a generation phase and a test-time inference phase. During the generation phase, the system uses LLMs to create multiple variations of a base prompt by applying cognitive heuristics. These variations are evaluated against training examples to identify high-performing candidates. The framework integrates a critique mechanism that analyzes the strengths and weaknesses of each prompt, generating feedback that informs subsequent iterations of refinement. By synthesizing new examples and leveraging reasoning chains, the system enhances both the diversity and quality of prompts. The optimized prompts and examples are applied to unseen tasks at test time, ensuring consistent performance improvements. This approach significantly reduces computational overhead by focusing on meaningful refinements rather than random mutations, making it suitable for resource-constrained environments.

The framework’s effectiveness is demonstrated through extensive experiments across 45 tasks, including datasets like Big Bench Instruction Induction (BBII) and arithmetic reasoning benchmarks such as GSM8K, AQUARAT, and SVAMP. PromptWizard achieved the highest accuracy in zero-shot settings on 13 out of 19 tasks, outperforming baseline methods like Instinct and EvoPrompt. It further improved accuracy in one-shot scenarios, leading to 16 out of 19 tasks. For example, it achieved a zero-shot accuracy of 90% on GSM8K and 82.3% on SVAMP, showcasing its ability to handle complex reasoning tasks effectively. Further, PromptWizard reduced token usage and API calls by up to 60 times compared to discrete methods like PromptBreeder, with a total cost of only $0.05 per task, making it one of the most cost-efficient solutions available.

PromptWizard’s success lies in its innovative combination of sequential optimization, guided critiques, and expert persona integration, ensuring task-specific alignment and interpretability. The results highlight its potential to transform prompt engineering, offering a scalable, efficient, and accessible solution for optimizing LLMs across diverse domains. This advancement underscores the importance of integrating automated frameworks into NLP workflows, paving the way for more effective and affordable utilization of advanced AI technologies.


Check out the Paper, Blog, and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post Microsoft AI Research Open-Sources PromptWizard: A Feedback-Driven AI Framework for Efficient and Scalable LLM Prompt Optimization appeared first on MarkTechPost.

]]>
https://www.marktechpost.com/2024/12/18/microsoft-ai-research-open-sources-promptwizard-a-feedback-driven-ai-framework-for-efficient-and-scalable-llm-prompt-optimization/feed/ 0 66499